12 resultados para Heart Failure

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested whether severe congestive heart failure (CHF), a condition associated with excess free-water retention, is accompanied by altered regulation of the vasopressin-regulated water channel, aquaporin-2 (AQP2), in the renal collecting duct. CHF was induced by left coronary artery ligation. Compared with sham-operated animals, rats with CHF had severe heart failure with elevated left ventricular end-diastolic pressures (LVEDP): 26.9 ± 3.4 vs. 4.1 ± 0.3 mmHg, and reduced plasma sodium concentrations (142.2 ± 1.6 vs. 149.1 ± 1.1 mEq/liter). Quantitative immunoblotting of total kidney membrane fractions revealed a significant increase in AQP2 expression in animals with CHF (267 ± 53%, n = 12) relative to sham-operated controls (100 ± 13%, n = 14). In contrast, immunoblotting demonstrated a lack of an increase in expression of AQP1 and AQP3 water channel expression, indicating that the effect on AQP2 was selective. Furthermore, postinfarction animals without LVEDP elevation or plasma Na reduction showed no increase in AQP2 expression (121 ± 28% of sham levels, n = 6). Immunocytochemistry and immunoelectron microscopy demonstrated very abundant labeling of the apical plasma membrane and relatively little labeling of intracellular vesicles in collecting duct cells from rats with severe CHF, consistent with enhanced trafficking of AQP2 to the apical plasma membrane. The selective increase in AQP2 expression and enhanced plasma membrane targeting provide an explanation for the development of water retention and hyponatremia in severe CHF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When the heart fails, there is often a constellation of biochemical alterations of the β-adrenergic receptor (βAR) signaling system, leading to the loss of cardiac inotropic reserve. βAR down-regulation and functional uncoupling are mediated through enhanced activity of the βAR kinase (βARK1), the expression of which is increased in ischemic and failing myocardium. These changes are widely viewed as representing an adaptive mechanism, which protects the heart against chronic activation. In this study, we demonstrate, using in vivo intracoronary adenoviral-mediated gene delivery of a peptide inhibitor of βARK1 (βARKct), that the desensitization and down-regulation of βARs seen in the failing heart may actually be maladaptive. In a rabbit model of heart failure induced by myocardial infarction, which recapitulates the biochemical βAR abnormalities seen in human heart failure, delivery of the βARKct transgene at the time of myocardial infarction prevents the rise in βARK1 activity and expression and thereby maintains βAR density and signaling at normal levels. Rather than leading to deleterious effects, cardiac function is improved, and the development of heart failure is delayed. These results appear to challenge the notion that dampening of βAR signaling in the failing heart is protective, and they may lead to novel therapeutic strategies to treat heart disease via inhibition of βARK1 and preservation of myocardial βAR function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic human heart failure is characterized by abnormalities in β-adrenergic receptor (βAR) signaling, including increased levels of βAR kinase 1 (βARK1), which seems critical to the pathogenesis of the disease. To determine whether inhibition of βARK1 is sufficient to rescue a model of severe heart failure, we mated transgenic mice overexpressing a peptide inhibitor of βARK1 (βARKct) with transgenic mice overexpressing the sarcoplasmic reticulum Ca2+-binding protein, calsequestrin (CSQ). CSQ mice have a severe cardiomyopathy and markedly shortened survival (9 ± 1 weeks). In contrast, CSQ/βARKct mice exhibited a significant increase in mean survival age (15 ± 1 weeks; P < 0.0001) and showed less cardiac dilation, and cardiac function was significantly improved (CSQ vs. CSQ/βARKct, left ventricular end diastolic dimension 5.60 ± 0.17 mm vs. 4.19 ± 0.09 mm, P < 0.005; % fractional shortening, 15 ± 2 vs. 36 ± 2, P < 0.005). The enhancement of the survival rate in CSQ/βARKct mice was substantially potentiated by chronic treatment with the βAR antagonist metoprolol (CSQ/βARKct nontreated vs. CSQ/βARKct metoprolol treated, 15 ± 1 weeks vs. 25 ± 2 weeks, P < 0.0001). Thus, overexpression of the βARKct resulted in a marked prolongation in survival and improved cardiac function in a mouse model of severe cardiomyopathy that can be potentiated with β-blocker therapy. These data demonstrate a significant synergy between an established heart-failure treatment and the strategy of βARK1 inhibition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired β-adrenergic receptor (βAR) function, which includes loss of βAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of βAR function is agonist-stimulated receptor phosphorylation by the βAR kinase (βARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in βAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of βARK1 or the β2AR were mated into a genetic model of murine heart failure (MLP−/−). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP−/− and MLP−/−/β2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP−/−/βARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP−/−/βARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP−/− mice but less than controls. Importantly, heightened βAR desensitization in the MLP−/− mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the βARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal βAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit βARK1 as a novel mode of therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used targeted gene disruption in mice to ablate nonmuscle myosin heavy chain B (NMHC-B), one of the two isoforms of nonmuscle myosin II present in all vertebrate cells. Approximately 65% of the NMHC-B−/− embryos died prior to birth, and those that were born suffered from congestive heart failure and died during the first day. No abnormalities were detected in NMHC-B+/− mice. The absence of NMHC-B resulted in a significant increase in the transverse diameters of the cardiac myocytes from 7.8 ± 1.8 μm (right ventricle) and 7.8 ± 1.3 μm (left ventricle) in NMHC-B+/+ and B+/− mice to 14.7 ± 1.1 μm and 13.8 ± 2.3 μm, respectively, in NMHC-B−/− mice (in both cases, P < 0.001). The increase in size of the cardiac myocytes was seen as early as embryonic day 12.5 (4.5 ± 0.2 μm for NMHC-B+/+ and B+/− vs. 7.2 ± 0.6 μm for NMHC-B−/− mice (P < 0.01)). Six of seven NMHC-B−/− newborn mice analyzed by serial sectioning also showed structural cardiac defects, including a ventricular septal defect, an aortic root that either straddled the defect or originated from the right ventricle, and muscular obstruction to right ventricular outflow. Some of the hearts of NMHC-B−/− mice showed evidence for up-regulation of NMHC-A protein. These studies suggest that nonmuscle myosin II-B is required for normal cardiac myocyte development and that its absence results in structural defects resembling, in part, two common human congenital heart diseases, tetralogy of Fallot and double outlet right ventricle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The signal transducer and activator of transcription (STAT) 3, a transcriptional factor downstream of several cytokines, is activated by Janus kinase families and plays a pivotal role in cardiac hypertrophy through gp130. To determine the physiological significance of STAT3 in vivo, transgenic mice with cardiac-specific overexpression of the Stat3 gene (STAT3-TG) were generated. STAT3-TG manifested myocardial hypertrophy at 12 wk of age with increased expression of the atrial natriuretic factor (ANF), β-myosin heavy chain (MHC), and cardiotrophin (CT)-1 genes. The animals were injected i.p. with 15 mg/kg doxorubicin (Dox), an antineoplastic drug with restricted use because of its cardiotoxicity. The survival rates after 10 days were 25% (5/20) for control littermates (WT), but 80% (16/20) for STAT3-TG (P < 0.01). WT showed increased expression of β-MHC and ANF mRNAs in the hearts 1 day after Dox treatment; this expression peaked at 3 days, suggesting that the WT suffered from congestive heart failure. Although the expression of these mRNAs was elevated in STAT3-TG hearts before Dox treatment, no additional increase was observed after the treatment. Dox administration significantly reduced the expression of the cardiac α-actin and Stat3 genes in WT hearts but not in STAT3-TG. These results provide direct evidence that STAT3 transduces not only a hypertrophic signal but also a protective signal against Dox-induced cardiomyopathy by inhibiting reduction of cardiac contractile genes and inducing cardiac protective factors.